31 ago 2011
René Descartes
René Descartes
La Haye, Francia, 1596 - Estocolmo, Suecia, 1650) Filósofo y matemático francés. René Descartes se educó en el colegio jesuita de La Flèche (1604-1612), donde gozó de un cierto trato de favor en atención a su delicada salud.
La Haye, Francia, 1596 - Estocolmo, Suecia, 1650) Filósofo y matemático francés. René Descartes se educó en el colegio jesuita de La Flèche (1604-1612), donde gozó de un cierto trato de favor en atención a su delicada salud.
Obtuvo el título de bachiller y de licenciado en derecho por la facultad de Poitiers (1616), y a los veintidós años partió hacia los Países Bajos, donde sirvió como soldado en el ejército de Mauricio de Nassau. En 1619 se enroló en las filas del duque de Baviera; el 10 de noviembre, en el curso de tres sueños sucesivos, René Descartes experimentó la famosa «revelación» que lo condujo a la elaboración de su método.
Tras renunciar a la vida militar, Descartes viajó por Alemania y los Países Bajos y regresó a Francia en 1622, para vender sus posesiones y asegurarse así una vida independiente; pasó una temporada en Italia (1623-1625) y se afincó luego en París, donde se relacionó con la mayoría de científicos de la época. En 1628 decidió instalarse en los Países Bajos lugar que consideró más favorable para cumplir los objetivos filosóficos y científicos que se había fijado, y residió allí hasta 1649.
Los cinco primeros años los dedicó principalmente a elaborar su propio sistema del mundo y su concepción del hombre y del cuerpo humano, que estaba a punto de completar en 1633 cuando, al tener noticia de la condena de Galileo, renunció a la publicación de su obra, que tendría lugar póstumamente.
En 1637 apareció su famoso Discurso del método, presentado como prólogo a tres ensayos científicos. Descartes proponía una duda metódica, que sometiese a juicio todos los conocimientos de la época, aunque, a diferencia de los escépticos, la suya era una duda orientada a la búsqueda de principios últimos sobre los cuales cimentar sólidamente el saber.
Este principio lo halló en la existencia de la propia conciencia que duda, en su famosa formulación «pienso, luego existo». Sobre la base de esta primera evidencia, pudo desandar en parte el camino de su escepticismo, hallando en Dios el garante último de la verdad de las evidencias de la razón, que se manifiestan como ideas «claras y distintas».
El método cartesiano, que Descartes propuso para todas las ciencias y disciplinas, consiste en descomponer los problemas complejos en partes progresivamente más sencillas hasta hallar sus elementos básicos, las ideas simples, que se presentan a la razón de un modo evidente, y proceder a partir de ellas, por síntesis, a reconstruir todo el complejo, exigiendo a cada nueva relación establecida entre ideas simples la misma evidencia de éstas.Los ensayos científicos que seguían, ofrecían un compendio de sus teorías físicas, entre las que destaca su formulación de la ley de inercia y una especificación de su método para las matemáticas. Los fundamentos de su física mecanicista, que hacía de la extensión la principal propiedad de los cuerpos materiales, los situó en la metafísica que expuso en 1641, donde enunció así mismo su demostración de la existencia y la perfección de Dios y de la inmortalidad del alma. El mecanicismo radical de las teorías físicas de Descartes, sin embargo, determinó que fuesen superadas más adelante.
Pronto su filosofía empezó a ser conocida y comenzó a hacerse famoso, lo cual le acarreó amenazas de persecución religiosa por parte de algunas autoridades académicas y eclesiásticas, tanto en los Países Bajos como en Francia. En 1649 aceptó la invitación de la reina Cristina de Suecia y se desplazó a Estocolmo, donde murió cinco meses después de su llegada a consecuencia de una neumonía.
Descartes es considerado como el iniciador de la filosofía racionalista moderna por su planteamiento y resolución del problema de hallar un fundamento del conocimiento que garantice la certeza de éste, y como el filósofo que supone el punto de ruptura definitivo con la escolástica.
27 ago 2011
Dominio de funciones
Bueno como otro día cualquiera para machucarnos la mente el maestro trajo este tema. Y así fue la clase de dominio de funciones:
Se dijo que a menudo el dominio de una función no aparece especificado, la función aparece indicada por una ecuación en dos variables:
Es decir, el dominio de la función de f es el conjunto mayor de números reales(negativos, fracciones, positi…) tales que el valores resultante f(x) es un numero real (conjunto de valore de x). No pueden ser números imaginarios ni división por cero.
Aqui a X se le busca un valor que este dentro del conjunto de los numeros reales.
Dominio de funciones(continuación)
Ejercicios como esteestuvimos aplicando en clase. En los ejercicios buscamos los valores posibles para x dentro de losnúmeros reales. Sabemos que dentro de un radical no puede haber negativos sinoel valor de la función seria un número imaginario y este no cae dentro delos conjuntos de números reales. Por lo tanto 3-5x tiene que ser mayor oigual que cero. Al despejar x para hallar su valor mayor o igual que 0nos da que 3/5 es mayor o igual que x. Esto significa que el dominio dela función es (negativo infinito a 3/5] . Esto significa que x puedetener valores desde negativo infinito hasta 3/5. El corchete indica que se incluyen los valores hasta 3/5.
Dependiendo de lasrestricciones de números imaginarios y división por cero es que hayamos eldominio de la función. Como por ejemplo si hay una x en el denominadorde una fracción sus valores van a ser ≠ (no igual) 0.
26 ago 2011
Blaise Pascal
(Clermont-Ferrand, Francia, 1623-París, 1662) Filósofo, físico y matemático francés. Su madre falleció cuando él contaba tres años, a raíz de lo cual su padre se trasladó a París con su familia (1630). Fue un genio precoz a quien su padre inició muy pronto en la geometría e introdujo en el círculo de Mersenne, la Academia, a la que él mismo pertenecía. Allí Pascal se familiarizó con las ideas de Girard Desargues y en 1640 redactó su Ensayo sobre las cónicas (Essai pour les coniques), que contenía lo que hoy se conoce como teorema del hexágono de Pascal.
La designación de su padre como comisario del impuesto real supuso el traslado a Ruán, donde Pascal desarrolló un nuevo interés por el diseño y la construcción de una máquina de sumar; se conservan todavía varios ejemplares del modelo que ideó, algunos de cuyos principios se utilizaron luego en las modernas calculadoras mecánicas.
En Ruán Pascal comenzó también a interesarse por la física, y en especial por la hidrostática, y emprendió sus primeras experiencias sobre el vacío; intervino en la polémica en torno a la existencia del horror vacui en la naturaleza y realizó importantes experimentos (en especial el de Puy de Dôme en 1647) en apoyo de la explicación dada por Torricelli al funcionamiento del barómetro.
La enfermedad indujo a Pascal a regresar a París en el verano de 1647; los médicos le aconsejaron distracción e inició un período mundano que terminó con su experiencia mística del 23 de noviembre de 1654, su segunda conversión (en 1645 había abrazado el jansenismo); convencido de que el camino hacia Dios estaba en el cristianismo y no en la filosofía, Blaise Pascal suspendió su trabajo científico casi por completo.
Pocos meses antes, como testimonia su correspondencia con Fermat, se había ocupado de las propiedades del triángulo aritmético hoy llamado de Pascal y que da los coeficientes de los desarrollos de las sucesivas potencias de un binomio; su tratamiento de dicho triángulo en términos de una «geometría del azar» lo convirtió en uno de los fundadores del cálculo matemático de probabilidades.
En 1658, al parecer con el objeto de olvidarse de un dolor de muelas, Pascal elaboró su estudio de la cicloide, que resultó un importante estímulo en el desarrollo del cálculo diferencial. Desde 1655 frecuentó Port-Royal, donde se había retirado su hermana Jacqueline en 1652. Tomó partido en favor de Arnauld, el general de los jansenistas, y publicó anónimamente sus Provinciales.
La tensión de su pensamiento entre la ciencia y la religión quedó reflejada en su admisión de dos principios del conocimiento: la razón (esprit géométrique), orientada hacia las verdades científicas y que procede sistemáticamente a partir de definiciones e hipótesis para avanzar demostrativamente hacia nuevas proposiciones, y el corazón (esprit de finesse), que no se sirve de procedimientos sistemáticos porque posee un poder de comprensión inmediata, repentina y total, en términos de intuición. En esta última se halla la fuente del discernimiento necesario para elegir los valores en que la razón debe cimentar su labor.
24 ago 2011
Pierre de Fermat
Pierre de Fermat
(Beaumont, Francia, 1601 - Castres, id., 1665) Matemático francés. Poco se conoce de sus primeros años, excepto que estudió derecho, posiblemente en Toulouse y Burdeos. Interesado por las matemáticas, en 1629 abordó la tarea de reconstruir algunas de las demostraciones perdidas del matemático griego Apolonio relativas a los lugares geométricos; a tal efecto desarrollaría, contemporánea e independientemente de René Descartes, un método algebraico para tratar cuestiones de geometría por medio de un sistema de coordenadas.
Diseñó también un algoritmo de diferenciación mediante el cual pudo determinar los valores máximos y mínimos de una curva polinómica, amén de trazar las correspondientes tangentes, logros todos ellos que abrieron el camino al desarrollo ulterior del cálculo infinitesimal por Newton y Leibniz. Tras asumir correctamente que cuando la luz se desplaza en un medio más denso su velocidad disminuye, demostró que el camino de un rayo luminoso entre dos puntos es siempre aquel que menos tiempo le cuesta recorrer; de dicho principio, que lleva su nombre, se deducen las leyes de la reflexión y la refracción. En 1654, y como resultado de una larga correspondencia, desarrolló con Blaise Pascal los principios de la teoría de la probabilidad.
Otro campo en el que realizó destacadas aportaciones fue el de la teoría de números, en la que empezó a interesarse tras consultar una edición de la Aritmética de Diofanto; precisamente en el margen de una página de dicha edición fue donde anotó el célebre teorema que lleva su nombre y que tardaría más de tres siglos en demostrarse. De su trabajo en dicho campo se derivaron importantes resultados relacionados con las propiedades de los números primos, muchas de las cuales quedaron expresadas en forma de simples proposiciones y teoremas.
Desarrolló también un ingenioso método de demostración que denominó «del descenso infinito». Extremadamente prolífico, sus deberes profesionales y su particular forma de trabajar (sólo publicó una obra científica en vida) redujeron en gran medida el impacto de su obra.
20 ago 2011
Funciones y Relaciones
Función es un conjunto de pares ordenados (x,y)en el cual no existen 2 pares ordenados con el mismo primer elemento y el segundo elemento diferente.
Las funciones se definen como:
-mediante correspondencia
-mediante un conjunto de pares ordenados
- mediante una ecuación en una variable digamos (x,y)
- mediante una grafica
Una función consiste:
- un conjunto de entradas llamadas dominio
Las funciones se definen como:
-mediante correspondencia
-mediante un conjunto de pares ordenados
- mediante una ecuación en una variable digamos (x,y)
- mediante una grafica
Una función consiste:
- un conjunto de entradas llamadas dominio
- una regla en la cual determina que cada entrada determina solamente y una sola salida
- un conjunto de salidas se llaman rango y alcanze
Las funciones se denotan por letras tales como: f, g y h. La que función cada numero real le asigna su cuadrado puede representarse como:f(x)=x^2
Es importante que puede utilizar cualquier letra para nombrar la variable independiente.
f(x) valor de y que la funcion f le asigna a x. La variable x se llama la variable independiente y la variable y es dependiente.
Relaciones:
Es una regla que establece una correspondencia entre dos conjuntos si x & y son dos elementos de los conjuntos x,y decimos que x corresponde a y o y depende de x.
Es importante que puede utilizar cualquier letra para nombrar la variable independiente.
f(x) valor de y que la funcion f le asigna a x. La variable x se llama la variable independiente y la variable y es dependiente.
Relaciones:
Es una regla que establece una correspondencia entre dos conjuntos si x & y son dos elementos de los conjuntos x,y decimos que x corresponde a y o y depende de x.
También podemos decir (x tiende a y) relación como un conjunto de pares ordenados(x,y).
10 ago 2011
Ecuaciones lineales y no lineales
En el principio de este curso estamos trabajando en el tema de ecuaciones lineales y no lineales. Esto como repaso de lo que dio el año pasado pero un poco más elaborado en los ejercicios a resolver. Dentro de las ecuaciones no lineales resolvimos ecuaciones con radicales y aprendimos un método más fácil de resolver un binomio al cuadrado . A continuación un ejemplo de los que hicimos en clase:
Suscribirse a:
Entradas (Atom)